Conditional Moment Restrictions and Triangular Simultaneous Equations∗

نویسندگان

  • Jinyong Hahn
  • Geert Ridder
چکیده

We examine whether a causal interpretation can be given to the function identified by the conditional moment restriction (CMR). It is shown that in a general nonseparable triangular system the CMR does not identify the average structural function (ASF) nor any other structural object. This implies that the CMR identifies a causal relation only if the model is structurally separable in observable covariates and unobservable random errors. This excludes for instance random coefficient models in which the CMR in general does not identify the average response. Because we discuss identification by CMR in a general nonseparable triangular system, we provide a condition under which this system is nonparametrically just identified from the population distribution of the observables, so that under this condition there is a one-to-one correspondence between the population distribution of the observables and the triangular nonseparable system. An implication of our results is that empirical researchers should use other methods than CMR if they want to estimate the average response in a random coefficient model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous equations models for discrete outcomes: coherence, completeness, and identification

This paper studies simultaneous equations models for two or more discrete outcomes. These models may be incoherent, delivering no values of the outcomes at certain values of the latent variables and covariates, and they may be incomplete, delivering more than one value of the outcomes at certain values of the covariates and latent variates. We revisit previous approaches to the problems of inco...

متن کامل

A Program for the Identification of Structural VAR-Models

This paper presents a menu-driven RATS-program which allows to identify structural shocks in vector-autoregressive (VAR) models. Identification is achieved by imposing short-run or long-run restrictions (or a combination of both) on the structural form of a model. The only requirement is that the matrix of restrictions consisting of rows of the restricted matrices of short-run and long-run effe...

متن کامل

Estimating a class of triangular simultaneous equations models without exclusion restrictions

Estimating a Class of Triangular Simultaneous Equations Models Without Exclusion Restrictions This paper provides a control function estimator to adjust for endogeneity in the triangular simultaneous equations model where there are no available exclusion restrictions to generate suitable instruments. Our approach is to exploit the dependence of the errors on exogenous variables (e.g. heterosced...

متن کامل

Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity

This paper uses control variables to identify and estimate models with nonseparable, multidimensional disturbances. Triangular simultaneous equations models are considered, with instruments and disturbances independent and reduced form that is strictly monotonic in a scalar disturbance. Here it is shown that the conditional cumulative distribution function of the endogenous variable given the i...

متن کامل

Testing for Nonnested Conditional Moment Restrictions via Conditional Empirical Likelihood

We propose non-nested tests for competing conditional moment resctriction models using a method of empirical likelihood. Our tests are based on the method of conditional empirical likelihood developed by Kitamura, Tripathi and Ahn (2004) and Zhang and Gijbels (2003). By using the conditional implied probabilities, we develop three non-nested tests: the moment encompassing, Cox-type, and effcien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008